Variation When Determining dNDF and NDFD and Its Prediction by NIRS

David R. Mertens
USDA-ARS
U.S. Dairy Forage Research Center

Presented at the 2004 NIRS Consortium

Introduction

- Nutritional importance of NDFD
 - 2001 Dairy NRC suggests it can be used to determine dNDF for estimating TDN1X
 - Oba and Allen () indicates it is related to intake of lactating cows
- Difference between NDFD and dNDF
 - NDF Digestibility = NDFD (% of NDF) = digestion coefficient of NDF
 - digestible NDF = dNDF (% of DM) = proportion of DM that is digestible NDF
 - dNDF = NDF*NDFD/100
 - 24% dNDF = 40% NDF*60%NDFD/100
 - dNDF is always less than NDF

Introduction

- Methods of determining NDFD
 - In vivo using total collection or markers
 - Lactating cows fed mixed diets
 - Sheep at maintenance fed forage only
 - In situ using porous bags
 - In vitro
 - Using flasks or tubes
 - Using filter bags Ankom Daisy system
 - Estimated using chemical composition
 - Related to lignin and silica

In Vivo Digestibility

- Is a biological evaluation of a feed that is not a constant, but varies with
 - Species
 - Size
 - Production level
 - Intake
 - Selection and sorting
 - Methodology

Digestibility as a Measure of Animal Performance

- In vivo production digestibility protocol
 - Specific for the performance status of animals
 - Production level of intake (1-5X Mnt)
 - Ad libitum (free choice) intake with refusals = selection
 - Measures digestibility during production
 - Much greater variability = difficult to measure inputs and outputs

Digestibility as a Measure of Feed Nutritive Value

- Standardized in vivo digestibility protocol
 - Designed to assign a value to a feed by minimizing animal performance differences
 - Mature animals
 - Maintenance level of intake (1X Mnt)
 - No selection or refusals
 - Measures maximum digestibility
 - Weigh feed, refusals and feces for 5-7 days

In Situ / In Sacco Digestibility

- Feed is sealed in a porous bag and suspended in the rumen of fistulated cows
- Assume in situ = in vivo
 - But only measures fermentative digestion
- Apparent value is in mimicking ruminal digestion for production levels and diets
- More difficult to standardize, especially among labs when used for feed evaluation
 - Bag dimensions and pore sizes
 - Washing of bags and removal of fines
 - Cyclic and variable ruminal conditions
 - Variability among animals

In Vitro Digestibility

- Single-stage IVDMD
 - Incubate ruminal fluid with feed in buffer
 - Dry residues and weigh
- Two-stage Tilley & Terry IVDMD
 - Incubate ruminal fluid with feed in buffer
 - Incubate undigested residue in acid pepsin
 - Dry residues and weigh

In Vitro Digestibility

Two-stage Van Soest IVDMTD

- Incubate ruminal fluid with feed in buffer
- Extract undigested residue in neutral detergent
- Dry NDF residues and weigh
- In vitro methods measure different things
 - Single and two-stage T&T IV measure apparent DM digestibility
 - Two-stage Van Soest IV measures true DM digestibility
 - T&T IVDMD will always be lower than VS IVDMTD

Digestibility is a Variable

- NDFD and dNDF are a function of the feed and system in which it is measured
 - Not simply a feed characteristic
 - In vivo digestibility is affected by the animal, its level of intake and the diet in which the feed is fed
 - In situ and in vitro digestibility are affected methodology

Objectives

- Discuss the factors that affect the in vitro and in situ measurement of NDFD
- Indicate the magnitude of variation in NDFD
- Discuss approaches to minimize variation in NDFD within and among laboratories

NDFD Determination Basic Steps

- Material preparation
- Test sample selection
- Inoculum preparation
- Buffer
- Media supplementation
- Fermentation
- Residue collection

- Test sample preparation
 - Drying less than 60C to minimize heat damaged protein and artifact lignin
 - Grinding recommendations vary
 - 8-mm screen Wiley cutter mill
 - Maximizes detection of physical effects
 - 2-mm screen Wiley cutter mill
 - Used for porous bag methods to minimize particle loss
 - Concentrates (1.5 to 2.5 mm), forages (1.5 to 5 mm)
 - 1-mm screen Wiley cutter mill
 - Most commonly used to detect digestibility differences
 - 1-mm screen, cyclone mill
 - Rarely, if ever, used for in vitro

Effect of Wiley Grind Size on Corn Silage 24h IV Digestion

Size	IVDMTD	SD	IVNDFD	SD
Whole	73.2	5.69	37.6	9.27
4-mm screen	76.7	3.79	44.9	5.50
1-mm screen	77.4	3.96	48.7	5.33

Mertens and Ferreira (2000)

Material Grind Size

- McLeod and Minson (1969) Grasses Christy mill
 - 0.40 mm-screen = 54.3% T&T IVDMD 48h
 - 1.00 mm-screen = 52.4% T&T IVDMD 48h
 - 1.96 mm-screen = 49.7% T&T IVDMD 48h
- Alexander (1969) Christy mill
 - $-0.60 \text{ mm} = 53.8\% (\pm .35) \text{ T&T IVDMD 48h}$
 - $-1.60 \text{ mm} = 50.3\% (\pm .70) \text{ T&T IVDMD } 48\text{h}$
 - $-2.45 \text{ mm} = 50.1\% (\pm .71) \text{ T&T IVDMD 48h}$

Material Grind Size

- Saldivar et al. (1982)
 - -0.5 UD = 52.5% T&T IVOMD 48h
 - -0.5 W = 52.3% T&T IVOMD 48h
 - -1.0UD = 50.3% T&T IVOMD 48h
 - -1.0 W = 47.1% T&T IVOMD 48h

Sample amount

- Smaller amounts typically increase variation
- Flask/tube method
 - Ratio of sample amount to buffer and inoculum
 - Typically .5 g per 40 ml buffer & 10 ml inoculum
- Bag method
 - Ratio of sample amount to buffer and inoculum
 - Ratio of sample amount to bag surface area
 - Typically recommend 10 to 20 mg/cm²

Test Sample Amount

- McLeod and Minson (1969) Grasses
 - -0.5g = 58.0% T&T IVDMD 48h (±1.1)
 - -0.6g = 57.2% T&T IVDMD 48h
 - -0.7g = 56.4% T&T IVDMD 48h
 - -0.8g = 56.1% T&T IVDMD 48h
 - -0.9g = 55.3% T&T IVDMD 48h
 - -1.0g = 55.0% T&T IVDMD 48h (±0.5)

- Fermentation Vessel
 - Flasks versus tubes
 - Changes surface area of submerged material
 - Changes side-wall contact
 - Bag characteristics
 - Size and area
 - $-5X5 \text{ cm} = 50 \text{ cm}^2$
 - Type
 - Filter bag (F57)
 - Dacron bags
 - Pore size
 - 50 μm (range from 20 to 60 μm)

Fermentation Vessel

- Sayre and Van Soest (1972)
 - Erlenmeyer flasks = 75.6% IVDMTD
 - Centrifuge tubes = 72.3% IVDMTD
 - Screwcap vials = 73.3% IVDMTD
- Robertson et al. (per. comm.)
 - -25 mm tubes = 52.3% IVNDFD
 - -32 mm tubes = 54.4% IVNDFD
 - Erlenmeyer flasks = 56.8% IVNDFD
- Grant and Mertens (1992)
 - -50 mL tubes = 66.3% IVNDFD
 - 125mL flasks = 67.8% IVNDFD

- Buffer used to maintain pH during fermentation
 - McDougall's artificial saliva
 - Ohio buffer
 - Kansas buffer
 - Van Soest buffer

- Supplementation of media
 - Trace minerals
 - Ammonia and amino acids
 - Branched-chain fatty acids
- Reduction and anaerobicity
 - Use of sulfide and cysteine
 - Reduced lag time (Grant and Mertens, 1992)
 - Use of indicator (resazurin)
 - CO₂ saturation of media and purging of vessels

Flushing Vessels with CO₂

- Minson and McLeod (1972)
 - Flushing gave no benefit for T&T IVDMD
 - 57.1% with versus 57.5% without
- Alexander (1969)

```
-CO_2 buffer+CO_2 flush = 61.0% IVOMD 48h
```

- CO₂ buffer+No flush = 59.4% IVOMD 48h
- No buffer+No flush = 57.8% IVOMD 48h

Flushing Vessels with CO₂

- Robertson et al. (per. comm.)
 - Cont. manifold = 56.5% IVNDFD 48h
 - Bunsen valves = 52.4% IVNDFD 48h
- Grant and Mertens (1992)
 - Cont. manifold = 69.6% IVNDFD 48h
 - Purge + Bunsen = 58.4% IVNDFD 48h

- Sample wetting/submerging
 - Floating material is a problem
 - Related to trapped gas and hydrophobicity
 - May interaction with vessel type
 - Solutions
 - Wet with a small amount of buffer
 - Submerge by evacuation
 - Swirling/mixing of vessels during fermentation
- Clumping a material in bags

Test Sample Wetting

- Minson and McLeod (1972) used evacuation to submerge particles
 - IVDMD = 53.2% without versus 55.2% with

- Inoculum Preparation
 - Donor
 - Single versus composite donors
 - Diet Intake level
 - Feed restriction prior to obtaining contents
 - Fasting beyond 16 hr is detrimental (Ayers, 1991)
 - Characteristics
 - pH
 - Optical density

Inoculum Preparation

Ayres (1991)

Sheep W1952.6% IVOMD

Sheep W3451.2% IVOMD

Sheep W2646.6% IVOMD

Sheep W31 45.1% IVOMD

Composite51.6% IVOMD

- Mertens, Weimer & Waghorn (unpubl)
 - Composite performed better than individual donors

Strained Ruminal Fluid pH/OD

- McLeod and Minson (1969) Grasses
 - -pH 6.1 = 58.8% T&T IVDMD 48h
 - -pH 6.7 = 59.2% T&T IVDMD 48h
 - -pH7.2 = 62.5% T&T IVDMD 48h
- Mertens and Ferriera (unpubl)
 - IVNDFD reduced below an OD threshold

- Inoculum Preparation
 - Strained rumen fluid versus solids extraction
 - Particle associated microbes
 - Time from collection to inoculation
 - Amount of inoculum

Inoculum Preparation

- Craig et al. (1984)
 - Particle-associated microbes collected by washing strained ruminal solid (+PM)
 - Solids were blended with ruminal fluid (B)

- SRF = 46.3% IVNDFD 48h

- SRF+PM = 48.6% IVNDFD 48h

-SRF(B) = 46.1% IVNDFD 48h

 $-SRF+PM4^{\circ}C = 45.8\% IVNDFD 48h$

Inoculum Preparation Delay

- Alexander (1969)
 - Normal (15min) 68.4% T&T IVDMD 48h
 - 1h delay 38.5 °C
 62.3% T&T IVDMD 48h
 - 1h delay cooled 58.3% T&T IVDMD 48h
- Mertens (1973)
 - Delay beyond 20 min (cow to inoculation) increased lag time

Strained Rumen Fluid to Buffer Ratio

- McLeod and Minson (1969) Grasses
 - -25:25 = 52.9% T&T IVDMD 48h
 - -15:35 = 51.2% T&T IVDMD 48h
 - -10:40 = 48.5% T&T IVDMD 48h
 - 5:45 = 43.9% T&T IVDMD 48h
 - -2.5:47.5 = 43.9% T&T IVDMD 48h
- Weimer (per. comm.)
 - IV digestion reduced below 10 mL SRF

- Incubation temperature
 - Recommended varies from 38-39.5 °C
 - Gas pressure measurements were extremely sensitive (Mertens and Weimer)
 - 10% reduction per 1 °C difference from 39 °C

Incubator Temperature

Alexander (1969)

- 35.5 °C

- 38.5 °C

- 42.0 °C

= 56.4% IVOMD 48h

= 58.7% IVOMD 48h

= 61.0% IVOMD 48h

Minson and McLeod (1972)

- 35.0 °C

- 37.0 °C

- 39.0 °C (min SD)

– 41.0 °C

- 43.0 °C

= 54.4% IVOMD 48h

= 58.4% IVOMD 48h

= 58.9% IVOMD 48h

= 59.7% IVOMD 48h

= 58.4% IVOMD 48h

- Adjustment using standards
 - Traditionally used in vitro versus in vivo calibration curves
 - Required 4 to 5 calibration samples per run
 - Variable effectiveness
 - Use standards to normalize or correct individual results
 - Use standards to determine validity of the entire run without correction

Adjustment of IV Digestibility Using Standards

- Adjustment using standards
 - Alexander (1969)
 - Scaling for std mean was ineffectual
 - Correcting using 4 ref std reduced single result SD from 1.27 to 0.89
 - Ayers (1991)
 - No adjustment if standards with 95% confidence level
 - Adjust by mean deviation, if the deviations of 4 standards are consistently different
 - Re-run if standards outside the 95% CI and are inconsistent

Mertens

Using standards as covariate rarely improves statistical analysis

Time of fermentation

- T&T 48h IVDMD consistently related to in vivo digestibility measured at maintenance levels of intake (Feed Evaluation Protocol)
- Allen et al indicate that producing dairy cows have a fiber retention time of 30 to 36 h
- Some have suggested that 24h IV fermentations may be a better indication of dairy cow performance

In Vitro Fermentation Time versus In Vivo Retention Time

- In vivo Retention Time DOES NOT equal in vitro fermentation time
 - i.e., digestion at 30 hr retention time DOES
 NOT equal digestion at 30 hr fermentation time
 - 1/kp = retention time ≠ fermentation time
 - In vivo digestion = kd / (kd + kp)
 - In vitro digestion = 1 DM*exp(-k*t)

In Vitro Variation

- Alexander (1969)
 - 1-stage rumen fluid

```
• Between run SD = 0.99
```

• Within run SD = 0.73

2-stage rumen fluid + acid pepsin (T&T)

• Between run SD = 0.63

• Within run SD = 0.38

In Vitro Variation

Reference	Within run	Among run
Alexander (1969)	.39	.66
Tilley & Terry (1963)	.61	1.90
Dent (1963)		1.50
Minson and McLeod (1972)	.94	2.24
Martin and Barnes (1969) A	.83	
Martin and Barnes (1969) B	.50	
Barnes (1967) 5-lab average	2.80	2.35
Ayers (1991)		1.18

In Vitro Variation

- IVNDFD is more variable than IVDMTD or IVDMD
 - IV undigested NDF (uNDF) has a variance
 - NDF determination has a variance
 - IVNDFD is the quotient of two variables
 - IVNDFD = 100*(NDF-uNDF)/NDF
 - Mathematical consequence of dividing mean and SD by a fraction
 - Mean = 50 and SD = 5, if all measurements are divided by .5 then Mean = 100 and SD = 10

NDFD Variation – Statistics 101

Summation of errors

- SD of determining NDFD using in vitro method = ±4.0
- SD of predicting IVNDFD using NIRS = ± 3.0
- Total SD of estimating NDFD using NIRS
 - = square root (IV_SD² + NIRS_SD²) = ±5.0

Outlier population

```
-\pm 1 SD = 31.7% of estimates outside \pm 5
```

$$-\pm 2$$
 SD = 4.6% of estimates outside \pm 10

 $-\pm 3$ SD = 0.26% of estimates outside ± 15

In Vitro Digestibility – Final Caution

- IVDMD DOES NOT EQUAL in vivo DMD, especially at production levels of performance
- Improvement in IVDMD and IVNDFD of bmr corn does not translate into improved dairy cow digestibility
 - Instead performance is increased due to increased intake
 - Not certain this is a universal response, but should indicate caution in using in vitro data